import os from rag_system.loaders.pdf_loader import load_pdf from rag_system.loaders.web_loader import load_web_crawl from rag_system.vectordb.azure_search import add_documents from dotenv import load_dotenv load_dotenv() # take environment variables def main(): print("[1/2] Splitting and processing documents...") # pdf_documents = load_pdf("data/verint-responsible-ethical-ai.pdf") documents = load_web_crawl(os.getenv("CRAWLER_COMPANY_URL")) for doc in documents: doc.metadata["company"] = os.getenv("CRAWLER_COMPANY_NAME") print("[2/2] Generating and storing embeddings...") # add_documents(pdf_documents) add_documents(documents) print("Embeddings stored. You can now run the Streamlit app with:\n") print(" streamlit run rag_system/app/streamlit_app.py") if __name__ == "__main__": main()