Adding AzureSearch AI as vector store
This commit is contained in:
9
.vscode/launch.json
vendored
9
.vscode/launch.json
vendored
@@ -4,11 +4,20 @@
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python Debugger: Current File",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"justMyCode": false,
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "Python:Streamlit",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"module": "streamlit",
|
||||
"justMyCode": false,
|
||||
"args": [
|
||||
"run",
|
||||
"app/streamlit_app.py",
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from llm.ollama import load_llm
|
||||
from vectordb.vector_store import retrieve
|
||||
from vectordb.azure_search import retrieve
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
|
||||
@@ -16,24 +16,29 @@ prompt = PromptTemplate(
|
||||
input_variables=["question", "documents"],
|
||||
)
|
||||
|
||||
def get_rag_response(query):
|
||||
print("⌄⌄⌄⌄ Retrieving ⌄⌄⌄⌄")
|
||||
retrieved_docs, metadata = retrieve(query, 10)
|
||||
print("Query Found %d documents." % len(retrieved_docs[0]))
|
||||
for meta in metadata[0]:
|
||||
print("Metadata: ", meta)
|
||||
print("⌃⌃⌃⌃ Retrieving ⌃⌃⌃⌃ " )
|
||||
|
||||
print("⌄⌄⌄⌄ Augmented Prompt ⌄⌄⌄⌄")
|
||||
llm = load_llm()
|
||||
# Create a chain combining the prompt template and LLM
|
||||
rag_chain = prompt | llm | StrOutputParser()
|
||||
context = " ".join(retrieved_docs[0]) if retrieved_docs else "No relevant documents found."
|
||||
print("⌃⌃⌃⌃ Augmented Prompt ⌃⌃⌃⌃")
|
||||
|
||||
print("⌄⌄⌄⌄ Generation ⌄⌄⌄⌄")
|
||||
response = rag_chain.invoke({"question": query, "context": context});
|
||||
print(response)
|
||||
print("⌃⌃⌃⌃ Generation ⌃⌃⌃⌃")
|
||||
|
||||
return response
|
||||
def get_rag_response(query):
|
||||
print("⌄⌄⌄⌄ Retrieving ⌄⌄⌄⌄")
|
||||
retrieved_docs = retrieve(query, 10)
|
||||
print("Query Found %d documents." % len(retrieved_docs))
|
||||
|
||||
print("⌃⌃⌃⌃ Retrieving ⌃⌃⌃⌃ ")
|
||||
|
||||
print("⌄⌄⌄⌄ Augmented Prompt ⌄⌄⌄⌄")
|
||||
llm = load_llm()
|
||||
# Create a chain combining the prompt template and LLM
|
||||
rag_chain = prompt | llm | StrOutputParser()
|
||||
context = (
|
||||
(" ".join(doc.page_content) for doc in retrieved_docs)
|
||||
if retrieved_docs
|
||||
else "No relevant documents found."
|
||||
)
|
||||
|
||||
print("⌃⌃⌃⌃ Augmented Prompt ⌃⌃⌃⌃")
|
||||
|
||||
print("⌄⌄⌄⌄ Generation ⌄⌄⌄⌄")
|
||||
response = rag_chain.invoke({"question": query, "context": context})
|
||||
print(response)
|
||||
print("⌃⌃⌃⌃ Generation ⌃⌃⌃⌃")
|
||||
|
||||
return response
|
||||
|
||||
@@ -4,6 +4,6 @@ from app.rag_chain import get_rag_response
|
||||
st.title("RAG System")
|
||||
query = st.text_input("Ask a question:")
|
||||
if query:
|
||||
response = get_rag_response(query)
|
||||
st.write("### Response:")
|
||||
st.write(response)
|
||||
response = get_rag_response(query)
|
||||
st.write("### Response:")
|
||||
st.write(response)
|
||||
|
||||
10
clearIndex.py
Normal file
10
clearIndex.py
Normal file
@@ -0,0 +1,10 @@
|
||||
from vectordb.azure_search import delete_all_documents
|
||||
|
||||
|
||||
def main():
|
||||
print("Deleting documents...")
|
||||
delete_all_documents()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -1,7 +1,5 @@
|
||||
from langchain_ollama import OllamaLLM
|
||||
|
||||
|
||||
def load_llm():
|
||||
return OllamaLLM(
|
||||
model="llama3.2",
|
||||
base_url="http://localhost:11434",
|
||||
temperature=0)
|
||||
return OllamaLLM(model="llama3.2", base_url="http://localhost:11434", temperature=0)
|
||||
|
||||
@@ -58,17 +58,11 @@ class FireCrawlLoader(BaseLoader):
|
||||
|
||||
def lazy_load(self) -> Iterator[Document]:
|
||||
if self.mode == "scrape":
|
||||
firecrawl_docs = [
|
||||
self.firecrawl.scrape_url(
|
||||
self.url, **self.params
|
||||
)
|
||||
]
|
||||
firecrawl_docs = [self.firecrawl.scrape_url(self.url, **self.params)]
|
||||
elif self.mode == "crawl":
|
||||
if not self.url:
|
||||
raise ValueError("URL is required for crawl mode")
|
||||
crawl_response = self.firecrawl.crawl_url(
|
||||
self.url, **self.params
|
||||
)
|
||||
crawl_response = self.firecrawl.crawl_url(self.url, **self.params)
|
||||
firecrawl_docs = crawl_response.data or []
|
||||
elif self.mode == "map":
|
||||
if not self.url:
|
||||
@@ -94,9 +88,7 @@ class FireCrawlLoader(BaseLoader):
|
||||
page_content = doc
|
||||
metadata = {}
|
||||
else:
|
||||
page_content = (
|
||||
doc.markdown or doc.html or doc.rawHtml or ""
|
||||
)
|
||||
page_content = doc.markdown or doc.html or doc.rawHtml or ""
|
||||
metadata = doc.metadata or {}
|
||||
if not page_content:
|
||||
continue
|
||||
|
||||
@@ -1,16 +1,11 @@
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain_community.document_loaders import PyPDFLoader
|
||||
|
||||
|
||||
def load_pdf(file_path):
|
||||
loader = PyPDFLoader(file_path)
|
||||
pages = loader.load()
|
||||
print(f"Loaded {len(pages)} documents from {file_path}")
|
||||
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
||||
splits = splitter.split_documents(pages)
|
||||
documents = []
|
||||
metadatas = []
|
||||
|
||||
for split in splits:
|
||||
documents.append(split.page_content)
|
||||
metadatas.append(split.metadata)
|
||||
|
||||
return (documents, metadatas)
|
||||
loader = PyPDFLoader(file_path)
|
||||
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
||||
documents = loader.load_and_split(splitter)
|
||||
print(f"Loaded and Split into {len(documents)} documents from {file_path}")
|
||||
|
||||
return documents
|
||||
|
||||
@@ -3,23 +3,30 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from loaders.firecrawl import FireCrawlLoader
|
||||
|
||||
|
||||
|
||||
def load_web_crawl(url):
|
||||
|
||||
|
||||
documents = []
|
||||
metadatas = []
|
||||
|
||||
|
||||
loader = FireCrawlLoader(
|
||||
url=url, api_key="changeme", api_url="http://localhost:3002", mode="crawl", params={ "limit": 100, "include_paths": ["/.*"], "ignore_sitemap": True, "poll_interval": 5 }
|
||||
url=url,
|
||||
api_key="changeme",
|
||||
api_url="http://localhost:3002",
|
||||
mode="crawl",
|
||||
params={
|
||||
"limit": 100,
|
||||
"include_paths": ["/.*"],
|
||||
"ignore_sitemap": True,
|
||||
"poll_interval": 5,
|
||||
},
|
||||
)
|
||||
docs = []
|
||||
docs_lazy = loader.load()
|
||||
for doc in docs_lazy:
|
||||
print('.', end="")
|
||||
print(".", end="")
|
||||
docs.append(doc)
|
||||
print()
|
||||
|
||||
|
||||
|
||||
# Load documents from the URLs
|
||||
# docs = [WebBaseLoader(url).load() for url in urls]
|
||||
# docs_list = [item for sublist in docs for item in sublist]
|
||||
@@ -33,5 +40,5 @@ def load_web_crawl(url):
|
||||
for split in splits:
|
||||
documents.append(split.page_content)
|
||||
metadatas.append(split.metadata)
|
||||
|
||||
return (documents, metadatas)
|
||||
|
||||
return (documents, metadatas)
|
||||
|
||||
26
main.py
26
main.py
@@ -1,16 +1,20 @@
|
||||
from loaders.pdf_loader import load_pdf
|
||||
from loaders.web_loader import load_web_crawl
|
||||
from vectordb.vector_store import add_documents
|
||||
from vectordb.azure_search import add_documents
|
||||
|
||||
|
||||
def main():
|
||||
print("[1/2] Splitting and processing documents...")
|
||||
# pdf_documents = load_pdf("data/verint-responsible-ethical-ai.pdf")
|
||||
# web_documents = load_web(["https://excalibur.mgmresorts.com/en.html"])
|
||||
web_documents = load_web_crawl("https://firecrawl.dev")
|
||||
print("[2/2] Generating and storing embeddings...")
|
||||
# add_documents(pdf_documents)
|
||||
add_documents(web_documents)
|
||||
print("Embeddings stored. You can now run the Streamlit app with:\n")
|
||||
print(" streamlit run app/streamlit_app.py")
|
||||
print("[1/2] Splitting and processing documents...")
|
||||
pdf_documents = load_pdf("data/verint-responsible-ethical-ai.pdf")
|
||||
# web_documents = load_web_crawl(["https://excalibur.mgmresorts.com/en.html"])
|
||||
# web_documents = load_web_crawl(["https://www.verint.com"])
|
||||
# web_documents = load_web_crawl("https://firecrawl.dev")
|
||||
print("[2/2] Generating and storing embeddings...")
|
||||
add_documents(pdf_documents)
|
||||
# add_documents(web_documents)
|
||||
print("Embeddings stored. You can now run the Streamlit app with:\n")
|
||||
print(" streamlit run app/streamlit_app.py")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main()
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
langchain
|
||||
langchain-community
|
||||
langchain-chroma
|
||||
langchain-openai
|
||||
chromadb
|
||||
pypdf
|
||||
streamlit
|
||||
@@ -8,4 +9,8 @@ ollama
|
||||
langchain_ollama
|
||||
bs4
|
||||
tiktoken
|
||||
firecrawl-py
|
||||
firecrawl-py
|
||||
azure-search-documents
|
||||
azure-identity
|
||||
python-dotenv
|
||||
black
|
||||
|
||||
2
retriever/.gitignore
vendored
Normal file
2
retriever/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
||||
node_modules/
|
||||
.env
|
||||
59
retriever/index.js
Normal file
59
retriever/index.js
Normal file
@@ -0,0 +1,59 @@
|
||||
import {
|
||||
AzureAISearchVectorStore,
|
||||
AzureAISearchQueryType,
|
||||
} from "@langchain/community/vectorstores/azure_aisearch";
|
||||
import { OpenAIEmbeddings, AzureOpenAIEmbeddings } from "@langchain/openai";
|
||||
|
||||
const query = process.argv[2] || "What is CX Automation?";
|
||||
|
||||
// the RAG widget uses the OpenAIEmbeddings class but the config will not work because you cannot pass in the api-version param. DO NOT USE
|
||||
// const embedding = new OpenAIEmbeddings({
|
||||
// openAIApiKey: openAIApiKey,
|
||||
// configuration: {
|
||||
// baseURL: `https://${azureOpenAIApiInstanceName}.openai.azure.com/openai/deployments/${azureOpenAIApiDeploymentName}?api-version=${azureOpenAIApiVersion}`,
|
||||
// },
|
||||
// })
|
||||
|
||||
const embedding = new AzureOpenAIEmbeddings({
|
||||
azureOpenAIApiInstanceName: process.env.AZURE_OPENAI_API_INSTANCE_NAME,
|
||||
azureOpenAIApiDeploymentName: process.env.AZURE_OPENAI_API_DEPLOYMENT_NAME,
|
||||
azureOpenAIApiVersion: process.env.AZURE_OPENAI_API_VERSION,
|
||||
azureOpenAIApiKey: process.env.AZURE_OPENAI_API_KEY,
|
||||
});
|
||||
|
||||
const store = new AzureAISearchVectorStore(embedding, {
|
||||
endpoint: process.env.AZURE_AISEARCH_ENDPOINT,
|
||||
key: process.env.AZURE_AISEARCH_KEY,
|
||||
indexName: process.env.AZURE_AISEARCH_INDEX_NAME,
|
||||
search: {
|
||||
type: AzureAISearchQueryType.SimilarityHybrid,
|
||||
},
|
||||
});
|
||||
|
||||
function getSourceId(document) {
|
||||
if (document.metadata) {
|
||||
const mergedMetadata = Object.values(document.metadata).join("");
|
||||
const metatDataObj = JSON.parse(mergedMetadata);
|
||||
return metatDataObj.source;
|
||||
} else return undefined;
|
||||
}
|
||||
|
||||
const resultDocuments = await store.similaritySearch(query);
|
||||
const sources = resultDocuments.map((doc) => ({
|
||||
source_id: getSourceId(doc),
|
||||
text: doc.pageContent,
|
||||
}));
|
||||
|
||||
const cqaSources = {
|
||||
instances: [
|
||||
{
|
||||
sources: sources,
|
||||
question: query,
|
||||
knowledgebase_description: process.env.AZURE_AISEARCH_INDEX_NAME,
|
||||
extra_guidance: "",
|
||||
language_code: "en-GB",
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
console.log(JSON.stringify(cqaSources, null, 2));
|
||||
2425
retriever/package-lock.json
generated
Normal file
2425
retriever/package-lock.json
generated
Normal file
File diff suppressed because it is too large
Load Diff
17
retriever/package.json
Normal file
17
retriever/package.json
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"name": "retriever",
|
||||
"version": "1.0.0",
|
||||
"main": "index.js",
|
||||
"scripts": {
|
||||
"test": "node --env-file=.env index.js \"What is Verint?\""
|
||||
},
|
||||
"author": "",
|
||||
"license": "MIT",
|
||||
"description": "",
|
||||
"dependencies": {
|
||||
"@azure/search-documents": "^12.1.0",
|
||||
"@langchain/community": "^0.3.43",
|
||||
"@langchain/core": "^0.3.56"
|
||||
},
|
||||
"type": "module"
|
||||
}
|
||||
14
shell.nix
14
shell.nix
@@ -1,14 +0,0 @@
|
||||
let
|
||||
pkgs = import <nixpkgs> {};
|
||||
in pkgs.mkShell {
|
||||
packages = [
|
||||
(pkgs.python3.withPackages (python-pkgs: [
|
||||
python-pkgs.langchain
|
||||
python-pkgs.langchain-community
|
||||
python-pkgs.chromadb
|
||||
python-pkgs.pypdf
|
||||
python-pkgs.streamlit
|
||||
python-pkgs.ollama
|
||||
]))
|
||||
];
|
||||
}
|
||||
139
vectordb/azure_search.py
Normal file
139
vectordb/azure_search.py
Normal file
@@ -0,0 +1,139 @@
|
||||
import os
|
||||
|
||||
from typing import Tuple
|
||||
from langchain_community.vectorstores.azuresearch import AzureSearch
|
||||
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings
|
||||
from dotenv import load_dotenv
|
||||
from uuid import uuid4
|
||||
|
||||
load_dotenv() # take environment variables
|
||||
required_env_vars = [
|
||||
"AZURE_DEPLOYMENT",
|
||||
"AZURE_OPENAI_API_VERSION",
|
||||
"AZURE_ENDPOINT",
|
||||
"AZURE_OPENAI_API_KEY",
|
||||
"VECTOR_STORE_ADDRESS",
|
||||
"VECTOR_STORE_PASSWORD",
|
||||
"INDEX_NAME",
|
||||
"RETRY_TOTAL",
|
||||
]
|
||||
|
||||
missing_vars = [var for var in required_env_vars if not os.environ.get(var)]
|
||||
if missing_vars:
|
||||
raise ValueError(
|
||||
f"Missing required environment variables: {', '.join(missing_vars)}"
|
||||
)
|
||||
|
||||
# Use AzureOpenAIEmbeddings with an Azure account
|
||||
embeddings: AzureOpenAIEmbeddings = AzureOpenAIEmbeddings(
|
||||
azure_deployment=os.getenv("AZURE_DEPLOYMENT"),
|
||||
openai_api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
||||
azure_endpoint=os.getenv("AZURE_ENDPOINT"),
|
||||
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
||||
)
|
||||
|
||||
# Specify additional properties for the Azure client such as the following https://github.com/Azure/azure-sdk-for-python/blob/main/sdk/core/azure-core/README.md#configurations
|
||||
vector_store: AzureSearch = AzureSearch(
|
||||
azure_search_endpoint=os.getenv("VECTOR_STORE_ADDRESS"),
|
||||
azure_search_key=os.getenv("VECTOR_STORE_PASSWORD"),
|
||||
index_name=os.getenv("INDEX_NAME"),
|
||||
embedding_function=embeddings.embed_query,
|
||||
# Configure max retries for the Azure client
|
||||
additional_search_client_options={"retry_total": os.getenv("RETRY_TOTAL")},
|
||||
)
|
||||
|
||||
|
||||
def get_document_id(document):
|
||||
"""
|
||||
Get the document ID from the document object.
|
||||
"""
|
||||
if hasattr(document, "metadata") and "id" in document.metadata:
|
||||
return document.metadata["id"]
|
||||
elif hasattr(document, "id"):
|
||||
return document.id
|
||||
else:
|
||||
raise ValueError("Document does not have a valid ID.")
|
||||
|
||||
|
||||
def delete_all_documents():
|
||||
"""
|
||||
Delete all documents from the AzureSearch vector store.
|
||||
"""
|
||||
try:
|
||||
|
||||
docs_to_delete = []
|
||||
while True:
|
||||
# Delete all documents in the index
|
||||
docs_to_delete = retrieve("", 10)
|
||||
|
||||
vector_store.delete(list(map(get_document_id, docs_to_delete)))
|
||||
if len(docs_to_delete) > 0:
|
||||
continue
|
||||
else:
|
||||
break
|
||||
|
||||
print("All documents deleted successfully.")
|
||||
except Exception as e:
|
||||
print(f"Error deleting documents: {str(e)}")
|
||||
|
||||
|
||||
def add_documents(documents):
|
||||
# uuids = [str(uuid4()) for _ in range(len(documents))]
|
||||
|
||||
try:
|
||||
vector_store.add_documents(documents)
|
||||
except Exception as e:
|
||||
print(f"Error adding document to vector store: {str(e)}")
|
||||
|
||||
|
||||
def retrieve(query_text, n_results=1):
|
||||
# Perform a similarity search
|
||||
docs = vector_store.similarity_search(
|
||||
query=query_text,
|
||||
k=n_results,
|
||||
search_type="similarity",
|
||||
)
|
||||
return docs
|
||||
|
||||
|
||||
# def add_document_to_vector_store(document):
|
||||
# """
|
||||
# Add a document to the AzureSearch vector store.
|
||||
|
||||
# Args:
|
||||
# vector_store: The initialized AzureSearch vector store instance.
|
||||
# document: A dictionary or object representing the document to be added.
|
||||
# Example format:
|
||||
# {
|
||||
# "id": "unique_document_id",
|
||||
# "content": "The text content of the document",
|
||||
# "metadata": {
|
||||
# "source": "source_url",
|
||||
# "created": "2025-03-04T14:14:40.421666",
|
||||
# "modified": "2025-03-04T14:14:40.421666"
|
||||
# }
|
||||
# }
|
||||
# """
|
||||
# try:
|
||||
|
||||
# # Add the document to the vector store
|
||||
# vector_store.add_documents([document])
|
||||
# print(f"Document with ID {document['id']} added successfully.")
|
||||
# except Exception as e:
|
||||
# print(f"Error adding document to vector store: {str(e)}")
|
||||
|
||||
# add_document_to_vector_store("https://api.python.langchain.com/en/latest/langchain_api_reference.html",None)
|
||||
# Example document to add
|
||||
|
||||
# doc = Document(
|
||||
# page_content="This is the content of the document.For testing IVA demo integration ",
|
||||
# metadata= {
|
||||
# "source": "https://example.com/source",
|
||||
# "created": "2025-03-04T14:14:40.421666",
|
||||
# "modified": "2025-03-04T14:14:40.421666"
|
||||
# }
|
||||
# )
|
||||
# Add the document to the vector store
|
||||
# add_document_to_vector_store( doc)
|
||||
|
||||
# result = retrieve("iva",1)
|
||||
@@ -2,11 +2,12 @@ from typing import Tuple
|
||||
import chromadb
|
||||
from langchain_chroma import Chroma
|
||||
from uuid import uuid4
|
||||
|
||||
# from chromadb.utils.embedding_functions.ollama_embedding_function import (
|
||||
# OllamaEmbeddingFunction,
|
||||
# )
|
||||
from langchain_ollama import OllamaEmbeddings
|
||||
from chromadb.api.types import (Metadata,Document,OneOrMany)
|
||||
from chromadb.api.types import Metadata, Document, OneOrMany
|
||||
|
||||
|
||||
# Define a custom embedding function for ChromaDB using Ollama
|
||||
@@ -14,6 +15,7 @@ class ChromaDBEmbeddingFunction:
|
||||
"""
|
||||
Custom embedding function for ChromaDB using embeddings from Ollama.
|
||||
"""
|
||||
|
||||
def __init__(self, langchain_embeddings):
|
||||
self.langchain_embeddings = langchain_embeddings
|
||||
|
||||
@@ -23,11 +25,12 @@ class ChromaDBEmbeddingFunction:
|
||||
input = [input]
|
||||
return self.langchain_embeddings.embed_documents(input)
|
||||
|
||||
|
||||
# Initialize the embedding function with Ollama embeddings
|
||||
embedding = ChromaDBEmbeddingFunction(
|
||||
OllamaEmbeddings(
|
||||
model="nomic-embed-text",
|
||||
base_url="http://localhost:11434" # Adjust the base URL as per your Ollama server configuration
|
||||
base_url="http://localhost:11434", # Adjust the base URL as per your Ollama server configuration
|
||||
)
|
||||
)
|
||||
|
||||
@@ -36,18 +39,17 @@ persistent_client = chromadb.PersistentClient()
|
||||
collection = persistent_client.get_or_create_collection(
|
||||
name="collection_name",
|
||||
metadata={"description": "A collection for RAG with Ollama - Demo1"},
|
||||
embedding_function=embedding # Use the custom embedding function)
|
||||
embedding_function=embedding, # Use the custom embedding function)
|
||||
)
|
||||
|
||||
|
||||
def add_documents(documents: Tuple[OneOrMany[Document], OneOrMany[Metadata]]):
|
||||
docs, metas = documents
|
||||
uuids = [str(uuid4()) for _ in range(len(docs))]
|
||||
collection.add(documents=docs, ids=uuids, metadatas=metas)
|
||||
|
||||
|
||||
|
||||
def retrieve(query_text, n_results=1):
|
||||
# return vector_store.similarity_search(query, k=3)
|
||||
results = collection.query(
|
||||
query_texts=[query_text],
|
||||
n_results=n_results
|
||||
)
|
||||
return results["documents"], results["metadatas"]
|
||||
results = collection.query(query_texts=[query_text], n_results=n_results)
|
||||
return results["documents"], results["metadatas"]
|
||||
Reference in New Issue
Block a user